On online bin packing with LIB constraints
نویسندگان
چکیده
منابع مشابه
On online bin packing with LIB constraints
In many applications of packing, the location of small items below large items, inside the packed boxes, is forbidden. We consider a variant of the classic online one dimensional bin packing, in which items allocated to each bin are packed there in the order of arrival, satisfying the condition above. This variant is called online bin packing problem with LIB (Larger Item in the Bottom) constra...
متن کاملOnline bin packing with cardinality constraints revisited
Bin packing with cardinality constraints is a bin packing problem where an upper bound k ≥ 2 on the number of items packed into each bin is given, in addition to the standard constraint on the total size of items packed into a bin. We study the online scenario where items are presented one by one. We analyze it with respect to the absolute competitive ratio and prove tight bounds of 2 for any k...
متن کاملOnline Bin Packing with Cardinality Constraints
We consider a one dimensional storage system where each container can store a bounded amount of capacity as well as a bounded number of items k ≥ 2. This defines the (standard) bin packing problem with cardinality constraints which is an important version of bin packing, introduced by Krause, Shen and Schwetman already in 1975. Following previous work on the unbounded space online problem, we e...
متن کاملOnline Bin Packing with Cardinality Constraints Resolved
Cardinality constrained bin packing or bin packing with cardinality constraints is a basic bin packing problem. In the online version with the parameter k ≥ 2, items having sizes in (0, 1] associated with them are presented one by one to be packed into unit capacity bins, such that the capacities of bins are not exceeded, and no bin receives more than k items. We resolve the online problem in t...
متن کاملPerformance Estimations of First Fit Algorithm for Online Bin Packing with Variable Bin Sizes and LIB constraints
We consider the NP Hard problem of online Bin Packing while requiring that larger (or longer) items be placed below smaller (or shorter) items — we call such a version the LIB version of problems. Bin sizes can be uniform or variable. We provide analytical upper bounds as well as computational results on the asymptotic approximation ratio for the first fit algorithm.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Naval Research Logistics (NRL)
سال: 2009
ISSN: 0894-069X
DOI: 10.1002/nav.20383